Tag: fuses

The Importance of Preventative Maintenance of Bus Ducts


Having an uninterrupted supply of electricity for customers is the main goal of a power generation industry to allow them to meet their demands. It can be very costly for a company to have any unplanned downtime due to any equipment failures. This is a fact when looking at bus duct systems since they effectively transfer power to switchgear and other loads. To prevent avoidable downtimes from occurring it is imperative to have preventative bus duct maintenance in place.

Neglect on Systems

Too often, critical systems like bus ducts that transmit power at industrial buildings go neglected. The reason behind this is because people are under the wrong concept that since bus duct systems do not consist of moving internal parts that they do not need regular maintenance or service. Over time, carbon and other foreign debris can build up and contaminate the bus systems that will, in turn, cause cataclysmic arcs and damage the equipment. Without proper inspection and preventative maintenance performed regularly, the equipment will have without a doubt have unexpected failures that will cause outages, can further damage equipment and increase safety risks for personnel as well. 

Preventing Failures

It is very important to have regular and systematic inspections of the bus duct systems performed. If the installation is done in unfavorable conditions, for example, high temperature/ humidity or environments with a lot of dust it is recommended these inspections are performed at a more frequent interval in these instances. The most common failures that are observed during bus duct failures can range from damaged gaskets/ bellows, grounding issues, cracked weld joints, conductor connection integrity, and even improper termination design or installation.

Installing New Bus Ducts

One factor to consider when installing a new or replacing bus duct system is to consider the ampacity requirement for your actual operating environment as opposed to just choosing one based on a standard chart’s temperature assumption. The most bus generally occupies at high-temperature areas since they are installed near the ceiling. Temperatures will continue to fluctuate while under load or no load as well, so it is important to do the research and know the limits of the equipment. Another good piece of advice is to install extra protection with service conductor bus ducts to protect the bus duct zone from fault. It may be an extra up-front cost but the savings from downtime in the future will be well worth it.

J & P Electrical Company is a full-service electricalcompany that supplies contractors, end users, and supply houses with new surplus, quality reconditioned, and obsolete electrical equipment. We offer a wide range of electrical equipment such as bus plugsbus ductspanelswitches, and transformers. Services include asset managementproduct reconditioning, and electrical products. More information can be found at https://www.jpelectricalcompany.com



Why is Asset Recovery Important?

Electrical plants can house a plethora of dangerous components and parts, and when one is torn down, for whatever reason, often what is left behind can be troubling for more than one party. Asset recovery is a very important step in this process and is something one should consider when dealing with large-scale tear-down projects. Fortunately, many organizations exist with fully insured, experienced, and professional experts who specialize in the proper recovery of assets of all kinds. Regardless, there are a few reasons to keep in mind as to why asset recovery is important.

Bad material in planet

 Electrical components may sometimes be made from natural resources, but the vast majority are man-made objects and thus do not do the planet any favors when left behind on tear-down sites. The material used to make these objects need to be recovered by a company that specializes in asset recovery so these materials can be stripped down and either recycled properly or reformatted to fit within new products. If this does not happen you can see these objects sticking around far longer than the planet would like, which benefits nobody.

Liabilities and cost

The cost of electrical components and parts can vary from relatively cheap to astonishingly high prices, depending on the nature of the item. It’s obvious that companies want to make money, so the idea of leaving assets and potential dollars on sites is not business owners. Being able to recover these assets ends up saving the supplier or manufacturer thousands of dollars AND prevents the assets from causing harm to the enviroment.

These components or IT assets can be a liability if not properly recovered and/or recycled. For certain IT components and devices, the possibility of sensitive information can always remain despite any attempts of wiping data, and anybody can recover these assets not affiliated with any professional asset recovery organization and use that data to their own advantage. It’s important that proper recovery is completed to not leave any potential data leaks from happening onsite.

Stolen

An obvious reason in which asset recovery is important bleeds into the prior two reasons: stolen property. Because a wide variety of electrical and IT components and parts are very expensive to the manufacturer no business wants to waste the money having their equipment stolen by somebody before it can be properly recovered. Theft is a widespread and universal issue spanning all industries and the theft of electrical components is not spared. It is an ongoing issue with theft and that is a good reason to support the recovery of electrical assets.

J & P Electrical Company is a full-service electrical company that supplies contractors, end users, and supply houses with new surplus, quality reconditioned, and obsolete electrical equipment. We offer a wide range of electrical equipment such as bus plugsbus ductspanelswitches, and transformers. Services include asset managementproduct reconditioning, and electrical products. More information can be found at https://www.jpelectricalcompany.com



Understanding Bus Plugs


If you are not an electrician or familiar with the terms used in the electric power fields, the products that make our homes and business run efficiently may be very mysterious. For some people, a bug plug sounds like its something the belongs in the automotive industry for actual busses? We are here today to get your electrical knowledge straightened out and give a inside look to what a bus plug really is and what it does.

What Is It exactly?

Bus plugs are basically what the name entails and are large industrial electric plugs that are like the ones you find in homes. However, Industrial or manufacturing plants that utilize heavy machinery require specialized power needs that is unique when compared to typical power distribution systems that are used inside residential or commercial buildings. Each bus plug is designed to connect to a specific section of bus duct or also known as busway, overhead and will then transfer electricity down to any chosen product whether it’s a lighting system or heavy equipment that needs power below. Busways were first produced in the late 1920’s for the automotive industry in Detroit and have since continued to improve and make their ways into many industrial plants to be utilized.

Why use them?

When looking at many industrial plants or buildings, many are structured in design with large open floor plans to maximize the total square footage and allow a variety of uses for the specific area. One of the major benefits of the busway and bus plug system is the flexibility of each product. With this type of installation, there is no physical hard wiring and the whole electrical system can be removed and rearranged to accommodate the building floor plan needed. As the future continues to change the machinery used, there are no concerns as to how power will be given to new equipment when things need to be moved or upgraded. Bus duct systems are a very efficient solution to get a lot of power to a big area that power distribution continues to change frequently. This is another reason why manufacturing plants need these products in order to provide large quantity of power to different areas of the building.

Proper Maintenance

Unplanned downtime can be detrimental and costly to any business and can be avoided with proper maintenance and service on products when needed. Bus ducts are extremely important in effectively providing power to switchgear and other different loads. Unfortunately, it is typical to find that critical systems that transmit power for industrial facilities are often neglected since many of people are unaware that regular maintenance and service is required even though bus ducts do not utilize moving internal parts.

J & P Electrical Company is a full-service electrical company that supplies contractors, end users, and supply houses with new surplus, quality reconditioned, and obsolete electrical equipment. We offer a wide range of electrical equipment such as bus plugsbus ductspanelswitches, and transformers. Services include asset managementproduct reconditioning, and electrical products. More information can be found at https://www.jpelectricalcompany.com



Questions That Are Important to Ask When Buying Electrical Surplus Inventory Online


When a project is cancelled, warehouses are liquidated, or there are manufacturing overruns an electrical surplus inventory is generated.  Local surplus dealers were once the only sellers of electrical surplus inventory.  Today however, surplus equipment can be purchased through e-commerce platforms.  It is important you should proceed with caution when you come across surplus electrical component’s suppliers online; research and asking the right questions when buying online is crucial.  Below you will see how you should proceed when buying electrical surplus online.

Asking the right questions when buying surplus electrical equipment online helps you make the right purchase.  These questions should include:

  • Is the equipment a product that is from the original factory?
  • Will the new surplus inventory come in a sealed box?
  • Are there any visible structural damage like fractures or cracks in the equipment?
  • Do the products being sold contain any proof of safety and reliability?
  • Are there any signs of the equipment being burned in any way?
  • Has the equipment been in use, when?
  • Has the product failed?  What were the circumstances of the failure?
  • Do the products come with a warranty? When does the warranty expire?
  • Does the equipment have a period in which it can be returned if it does not meet the required standards?

Essentials to Consider When Purchasing Surplus Electrical Equipment

Voltage Ratings Input/Output

Know the voltage rating of the surplus electrical product as well as the voltage rating of your power sources.  This will determine if the equipment is suitable for your application.  Incorrect voltage ratings risk short circuiting, arching, and electrical fires.

Continuous Current Rating

The continuous current rating will allow you to know if the device will be able to perform properly in varying environments.  This is listed as Amperes.  They represent the continuous current that can be carried when used in the temperatures it is calibrated for.

Current Rating, Short-Circuit

Short-circuit current rating, SCCR, is a current rating that defines the maximum short-circuit current the product can safely handle.  Individual SCCR components for the electrical assembly are calculated to determine the SSCR for the entire electrical panel.

Electrical Current Frequency

Pay attention to the current frequency at which equipment or breakers are designed to operate properly.  The electrical current frequency determines the highest current a device can handle operating at without issue.

Don’t compromise the quality of surplus equipment by purchasing from a less than a reputable electrical component supplier.  At J & P Electrical, we assure quality and competitive pricing.  Contact us today to discuss your needs. 

J & P Electrical Company is a full-service electrical company that supplies contractors, end users, and supply houses with new surplus, quality reconditioned, and obsolete electrical equipment. We offer a wide range of electrical equipment such as bus plugsbus ductspanel switches, and transformers. Services include asset managementproduct reconditioning, and electrical products. More information can be found at https://www.jpelectricalcompany.com



Installing Bus Ducts Properly

Bust ducts, known also as busways, are created from a sheet of metal with the busbar being made of copper or aluminum. Bus ducts conduct electrical currents, that is their main purpose when used in manufacturing.  Many companies manufacture bus ducts, with the most popular supplier being Square D.  Not only does Square D manufacture bus ducts, they supply a wide range of bus plugs, electrical switches, circuit breakers, and more.  Proper installation and assembly of a bus duct will save you money and prevent costly downtime. 

Proper Bus Duct Installation

In order to ensure your electrical system functions properly your bus ducts must be installed correctly.  Bus ducts are used to provide power throughout an electrical system so if there is an issue with the bus duct it can result in costly delays and downtime.  In order to avoid this, proper installation is required.

The Importance of Ampacity

The amount of electrical current that a device can withstand without being damaged is known as ampacity.  A bus ducts ampacity rating is determined by using the temperature within the operating space and referencing a standard chart for temperature assumptions.  Once the operating temperature has been determined users must consider the rise in temperature between a zero current and a full load current.  As an example, a common bus duct with copper inside often has a current rating of 2,000 amps per square inch.  The rating results in the voltage dropping as the temperature increases.

Additional Protection

Like with any installation especially electrical, location is a key aspect that needs to be considered.  For most facilities bus duct installation is downstream from transformers and upstream from the primary overcurrent device.  Whatever devices is being used to protect the transformer cannot be used to protect the bus duct from electrical fault.

Extra protection to the bus ducts is another way to decrease any potential downtime from occurring.  When downtime occurs, facilities end up paying for workers to stand around.  Adding an extra layer of protection to your bus duct will give you extra peace of mind as you will know your bus duct will properly function.   

Bus ducts that are installed outdoors should include protection from the elements.  Choose a shelter that allows water to drain vs sitting in a pool overhead.  Extra water allowed to collect can cause a short in the bus duct.  Humidity can also be an issue when bus ducts are utilized outside.  This can be prevented by using stainless steel as it inhibits corrosion.  An epoxy primer of paint can be added to the housing to prevent the oxidation of the metal.

Bus ducts can also be installed on an outside wall.  When this is the case proper flame-retardant wall fittings that are waterproof and vapor-resistant should also be used as a precaution.  Extra supports for the ducts where they enter the wall should be in place to hold the extra weight. 

The installation of bus ducts is important.  Correct installation allows a system to function properly without downtime.  Protection helps to prevent corrosion and protects from outside elements.  And using proper metals and assembly kits from the manufacturer help to ensure you are using the right materials for your bus duct assembly.

J & P Electrical Company is a full-service electricalcompany that supplies contractors, end users, and supply houses with new surplus, quality reconditioned, and obsolete electrical equipment. We offer a wide range of electrical equipment such as bus plugsbus ductspanelswitches, and transformers. Services include asset managementproduct reconditioning, and electrical products. More information can be found at https://www.jpelectricalcompany.com

Preventive Maintenance Keeps Equipment Running Longer


Heavy machinery used in manufacturing requires continual maintenance in order to keep it running at peak efficiency.  Poorly maintained machinery will run poorly and breakdowns cost money not only for repairs but also in downtime.  When machinery is not maintained, safety is compromised. 

Professional Tips for Maintaining Machinery and Electrical in Manufacturing

  • Keep Up to Date with Operator Training

Most large scaled machinery will have multiple operators.  Manufacturing facilities running three shifts will have operators on each shift as well as others to fill in when necessary.  When using any tracking software for machine maintenance it is important that operator training for equipment is part of the checklist. Correct machine operation is critical in maintain machinery. 

Operators should be trained in visual inspection as well.  When a piece of equipment is first introduced into a manufacturing facility it should be thoroughly inspected by the operators who will be using the machine. This is also a good time to provide critical operator training and to put in place a training schedule.  When machinery is updated all operators need to be included in additional training. Not only is there employee turnover to account for, but overtime operators will become relaxed which will lead to breakdowns in proper techniques. On going training helps to eliminate this. 

Equipment manuals should be kept up to date and revised as needed.  These manuals should be kept within the vicinity of the equipment so that operators have access to them when needed.  A shorter manual can be used for ease of reference on common everyday operations. 

  • Apply Lubricants Liberally and Frequently

Manufacturing components move all the time.  Lubricants can reduce the friction that is caused from all of these moving parts.  A regular maintenance schedule involving lubrication not only extends the machines lifespan and the longevity of the electrical components and parts working within the machine.

Lubrication is one of the most importance aspects in machine maintenance and should be checked on a regular basis.  It is critical that signs of excess oil and grease build-up are tracked as well as cracks in oil seals and leaks.

Using the correct lubricant for the machine and the components within is important.  Be sure to use the oil and grease that is recommended by manufacturers when lubing up electrical components. Checking lubricants helps in the diagnosis of problems in large machinery.  Experts can analyze the particles in used oil.  The makeup of the contaminants can indicate the part of the machine that is suffering from excess wear and breakdown.

  • Examine Machinery for Signs of Wear

Machinery in manufacturing facilities often operates at high temperatures, with vibration, shock, and friction that contribute to the overall breakdown and wear of heavy machinery and electrical components and parts within.

  • Machine vibrations come from belts and gears that are not in alignment.
  • Shock comes from accidents and poor operation techniques.
  • Increased temperatures come from extensive use, friction, improper lubrication, and worn our parts.
  • The age of key machine components can cause deterioration. Belts can warp, seals can crack and dry out, bolts loosen and stretch.  The age of large scaled machinery needs to be tracked and monitored to avoid a compromise to the safety of your machine.   

When you notice that moving parts in your heavy machinery is beginning to wear and tear it is important to perform necessary maintenance as soon as possible.  The replacement of worn parts is essential to the health of your equipment.

  • Keep the Facility Clean and Maintain Clean Equipment

Heavy machinery and the facility that contains it should be kept free of contaminants and as clean as possible.  Seals and filters should be examined to ensure they are in good order.  It is crucial that manufacturing equipment and the components within are kept tidy.

  • Maintain a Record of Maintenance and Repairs

Record keeping of repairs and maintenance on equipment is beneficial for so many reasons.  Over time patterns will emerge and you will be able to anticipate when components will fail.  Detailed records of preventive maintenance such as checking fluids, electrical systems, and components within.  Moving parts are especially important in maintenance. 

  • Moving components create friction.  These items need to be inspected for wear and replaced on a regular basis. 
  • Gears need to be lubricated often. 

Following these steps will extend the lifespan of manufacturing equipment and heavy machinery.  With the exuberant costs associated with large scaled equipment and machines, increasing your ROI with regular maintenance and replacement of electrical components you can extend the usable time of these pieces. 

J & P Electrical Company is a full-service electrical company that supplies contractors, end users, and supply houses with new surplus, quality reconditioned, and obsolete electrical equipment. We purchase a wide range of electrical equipment such as bus plugs, bud ducts, panel switches, substations, and transformers.  More information can be found at https://www.jpelectricalcompany.com



More on Electrical Distribution Equipment Failure – Should It Be Kept or Discarded?

As we promised in our last installment, we will continue the discussion on equipment failure.  We will continue to dive into various electrical components and how they work, their longevity, usage, and testing. 

Transformers

Transformers are large scaled pieces of equipment that are used to either reduce or increase the voltage produced by a current.  Liquid filled transformers are most often installed outdoors on a concrete slab, under a canopy to protect against the elements.  The liquid serves two purposes, it cools the transformer coils and provides insulation between the coils and the grounded tank. 

Older transformers use insulating mineral oils where as newer transformers use either a silicon based, fluorinated hydrocarbon, or combustion resistant vegetable oil based dielectric fluid or synthetic esters.  These insulating fluids break down first due to the entrance of moisture, impurities, and intermittent periods of heating and cooling.  Liquid transformers can deliver consistent service for more than 30 years with regular maintenance, fluid replacement, testing, and repairs.

Low Voltage Circuit Breakers

LV distribution systems commonly use molded case circuit breakers.  These systems contain two elements that deteriorate when used, a spring-loaded operating mechanism and copper contacts.  These two components will wear out from abrasion while closing and arching when the breaker is opened.  Larger breakers can be replaced. 

As these systems age the mechanisms that operate will start to slow down which delays clearing times.  The springs operating the mechanism are strong and hardly ever need to be fixed or repaired.  Lubrication however will deteriorate and need to be replenished to avoid the slower clearing times.  When a breaker operates above the normal trip rate it should be replaced.  These systems often last upwards of 20 years.  After 20 years replacement is most often recommended whether or not you are seeing slower clearing times during testing.

Low Voltage and Medium Voltage Cables

For most of us cables are quiet simple consisting of a stranded aluminum or copper conductor that is wrapped in insulation as well as a jacket that is resilient to the weather.  The manufacturing of electrical power and control cables sounds fairly simple however this industry is one that is in fact highly specialized.

Assessing the integrity of electrical cabling and its remaining longevity is important however can be quite complicated.  Cables can quickly lose electrical integrity while it is in use because of air pockets, gas pockets, and the voids found in the insulation.  This occurs due to thermal expansion and contraction.  If cables are in water their deterioration will occur at a faster rate.  Testing and analysis on these voids will offer up an estimate on the life that remains for the cable. J & P Electrical Company is a full-service electrical company that supplies contractors, end users, and supply houses with new surplus, quality reconditioned, and obsolete electrical equipment. We purchase a wide range of electrical equipment such as bus plugs, bud ducts, panel switches, substations, and transformers.  More information can be found at https://www.jpelectricalcompany.com



Electrical Distribution Equipment Failure – Keep or Discard


When dealing with electrical equipment and components it is inevitable that they will fail, and you will have to deal with the consequences.  The minute electrical equipment is put into place, from transformers to circuit breakers and panel switches and tap boxes, they start to decline.  Deterioration of electrical products happens for a number of reasons including:

  • Moisture Absorption
  • Differing Temperature Cycles
  • Dust and Particles Settling
  • Condensation Buildup
  • Fragile Operating Springs
  • Insulation Material Breakdown
  • Rusted Out Switchgear Enclosures
  • Dried Out Capacitors

When electrical components within distribution systems age vulnerabilities start to appear. With automation being what it is today, electrical technology can often run unassisted, without issue for years. Because of this maintenance on these systems tend to be ignored which can lead to unpredicted failures which lead to catastrophic failures; the most common being fire.  Thus, in order to keep electrical components operating at their peak and delivering consistent power renovations and maintenance are critical.

The two biggest nemeses of electrical equipment and the components within are moisture, condensation, dust, and loose particles. When equipment is installed outdoors or in spaces that offer no type of temperature or humidity control deterioration occurs more rapidly then in spaces where there are controls, just at a slower, more gradual pace. 

Based on the quality, maintenance schedule, and environment of electrical equipment and components that are installed the deterioration rate varies.  When planning for maintenance, upkeep, and refurbishment of electric components and equipment it is important to establish the age and overall condition of each piece. 

Electrical Equipment and Component Insulation

Components within each piece of equipment must be inspected individually.  Insulation is the component of electrical equipment that degrades the quickest.  Paper and solid synthetic insulation is used throughout equipment around motors, capacitors, cables, transformers, circuit breaker trip coils, operating coils of contractors, and reactors.  The breakdown of insulation depends a great deal on the temperatures that it is exposed to.  To increase longevity of equipment and decrease the breakdown of insulation it is important for equipment not to be operated above optimal temperature ratings.

Capacitors in Electrical Equipment

There are various types of capacitors used in both low and medium voltage distribution systems including:

  • Surge Capacitors
  • Power Factor Correcting Capacitors
  • Commutating Capacitors
  • Capacitors in Active and Passive Filters
  • Pole-Mounted Capacitors

The most common capacitor to use in ratings up to several hundred kVAR is power factor correction.  They are sealed in airtight, insulated units for protection.  The insulating material that is used is a metalized polypropylene film that is compressed in a thermal setting resin.  In the event of internal failure, pressure sensitive interrupters are used to disconnect the capacitor. Capacitors are always fused externally because their failure is most often due to circuit shorts.

There is a nonstop loss of power internally because of lag thus causing the insulating resin to dry.  This often goes unnoticed.  Most capacitors have an average life expectancy of about seventeen years when in continuous operation. This of course decreases depending on the environment in which it operates.  Many systems have a decrease in this average life expectancy due to being exposed to over use and variation in frequency.  To check measurements for capacitors, use clamp-on ammeter to test and detect disparity over time.  

In our next installment we will dive deeper into more electrical components and how they work, their longevity, usage, and testing.  Such components we will inspect will include transformers, circuit breakers, reactors, cables, relays, and more.

J & P Electrical Company is a full-service electrical company that supplies contractors, end users, and supply houses with new surplus, quality reconditioned, and obsolete electrical equipment. We purchase a wide range of electrical equipment such as bus plugs, bud ducts, panel switches, substations, and transformers.  More information can be found at https://www.jpelectricalcompany.com



What Is an Air Breaker and How Do They Work?


Just as molded case circuit breakers, MCCB, air circuit breakers, ACB, is device that is in place to provide protection from an electrical surge or short-circuit.  The main difference is the amps they protect; ACB can withstand higher short circuit currents and mechanical stress because of the arc extinguisher element then MCCB can.  There are a variety of air circuit breakers and switching gears available to purchase.  Air circuit breakers have replaced oil circuit breakers because of their resiliency, performance, ease of installation, and low maintenance level. 

Three Types of Air Break Circuit Breaker

The three main types of air break circuit breakers include: plain break, magnetic blowout, and air chute.  Their main application is for use in maintaining indoor voltage and switch gears.

Plain Break

The simplest of all air circuit breakers is the plain brake.  Two horns shape the main point of contact.  This creates an arc that extends from the tip of one to the other. 

Magnetic Blowout

In higher voltage capacity’s, up to 11KV, magnetic blowout air circuit breakers are used.  The arc extension gets by the magnetic field that is made from the current in blowout coils.

Air Chute

Air chute air break circuit breakers have main contacts of copper and conduit which are in the closed position.  They are most often silver plated and have a low contact resistance.  The arching contacts are created from copper alloy and are resistant to heat and are solid. 

Air circuit breakers are most often used for controlling the power station auxiliaries and industrial plants.  They provide protection to electrical machinery such as transformers, capacitors, and generators.  Where ever there is a possibility of fire or explosion, air circuit breakers are most often installed.   They offer a higher resistance to power that allows an increase in the resistance of the arc by splitting, cooling, and lengthening.  The main drawback in air circuit breakers is that the arc chute principle is less efficient under low currents where electromagnetic fields are weak. 

J & P Electrical Company is a full-service electrical company that supplies contractors, end users, and supply houses with new surplus, quality reconditioned, and obsolete electrical equipment. We purchase a wide range of electrical equipment such as bus plugs, bud ducts, panel switches, substations, and transformers.  More information can be found at https://www.jpelectricalcompany.com



Generator Tap Boxes: Instant Power During Power Outages


No matter what business you are in, be it manufacturing, banking, health care, or education a sudden change in the power situation can be a debacle.  A loss of power means a loss of time, resources, and more so it is imperative to prepare for just such an occasion. 

 To plan ahead to avoid an electrical interruption companies could choose to install a permanent generator. An installed permanent generator can be a large maintenance expense.  To avoid this extra expense the installation of a tap generator is a viable, cost effective option.  When a natural disaster like storms,blackout, and what not a tap generator allows businesses to get your electricity back up and running quickly. 

A tap box is a simplistic generator that is installed outside of the business.  It plays the role of connecting the business’s portable generator to the electrical system.  This allows you to get a temporary supply of electricity running to avoid downtime.  This connection can be made either manually or using an automatic transfer switch.  The power is generated so efficiently that it can be up and running without any delay using programable logic circuits and auto start generators.  Your power system will be emergency ready and the cost savings of no down time and not having to hire a professional electrical contractor to temporarily connect power will be pay off the first time the power goes out.  Being prepared ahead of time pays off.

When having a generator tap box installed you will want to assess your electrical needs.  The needs and requirements that your specific business have will vary from even your competition.  Here are some things to consider when choosing a generator tab box

  • How often do you lose power?
  • What are your electrical needs?
  • What systems are crucial to keep running?
  • What is your budget?

No matter what the answers are to these questions, J & P Electrical will have a solution that fits your exact needs. 

J & P Electrical Company is a full-service electrical company that supplies contractors, end users, and supply houses with new surplus, quality reconditioned, and obsolete electrical equipment. We purchase a wide range of electrical equipment such as bus plugs, bud ducts, panel switches, substations, and transformers. More information can be found at https://www.jpelectricalcompany.com